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ABSTRACT

Arbitrary wave field is well-known to be represented by su-
perposing of Bessel functions with the Fourier-Bessel series ex-
pansion. According to the addition theorem, the Bessel func-
tion of which origin is put on the center of a circle is described
by superposing of Hankel functions of which origins are put on
the circumference of a circle. Using this relation between these
functions, the present paper proposes the methods on generat-
ing extreme waves by superposing of ring waves expressed by the
Hankel function. As a result of simulation and experiment in the
circular wave basin, which is called AMOEBA, the validity of the
proposed method is clarified.

KEY WORDS: AMOEBA; element absorbing wave-maker; addi-
tion theorem; Fourier-Bessel expansion; extreme wave

INTRODUCTION

Ship behavior in extreme wave has not been sufficiently clar-
ified. The characteristics of ship responses in extreme wave are
often obtained from model experiments in a towing tank or a
wave basin. The extreme wave with big height and steepness is
usually generated by focusing element regular waves at a specific
location with the same phase. This extreme wave appears in an
instant because of wave divergence.
The theory of extreme-wave generation is based on the super-

position of long-crested waves propagating forward. The long-
crested waves is usually generated by the snake motion of element
(segmented) wave-makers put on a rectangular basin (Madsen
1974, Ishida et al. 1984, Takezawa et al. 1992). However, a wave
generated by an element wave-maker is a ring wave. Hence it

is better that the theory of extreme-wave generation is based on
the superposition of ring waves. This paper proposes a mathe-
matical method of generation of extreme waves by ring waves.
Consequently we expect to generate more arbitrary and accurate
wave field.
Ring wave is expressed by the Bessel function mathematically.

It disperses outward from a source in the forward time and focuses
at the source point in the reverse time. To generate ring wave, we
require a wave basin furnishing many element absorbing wave-

Fig. 1 Photograph of AMOEBA.

Proceedings of the Nineteenth (2009) International Offshore and Polar Engineering Conference
Osaka, Japan, June 21-26, 2009
Copyright © 2009 by The International Society of Offshore and Polar Engineers (ISOPE)
ISBN 978-1-880653-53-1 (Set); ISSN 1098-618

389



makers around the whole of the basin. Authors (Naito et al.
1999) have developed this basin of which name is AMOEBA;
Advanced Multiple Organized Elemental BAsin consisting of fifty
units of element absorbing wave-makers as shown in Fig. 1. This
photograph shows a letter S appearing on the water surface in
the AMOEBA. This letter is written by many focused wave on
the path of the letter. However, the wave height and steepness
are uncertain. The wave height an steepness of the designed wave
focusing at a specific location must be certain. For this aim, the
relation between the designed wave and ring waves generated by
element wave-maker must be clarified.
To validate this mathematical expansion, using ring waves we

generate the extreme wave on the free surface in the basin in an
instant. Wave height measured with a wave probe also agrees
to the target height of the designed extreme wave. These results
conclude the proposed method is valid for generating the extreme
wave.

WAVES EXPRESSED BY BESSEL FUNCTION

Waves diverging from a periodical wave source put on a water
surface is expressed by H

(1)
0 ;the 0th order Hankel function of the

first kind given by a first order solution of the Laplace’s equation.
Naito et al.(1994, 1998, 2006) have expressed this wave source
by an element wave-maker. Furthermore, they have proposed
an element absorbing wave-maker which can generate divergent
waves and absorb incident waves at the same time. This wave ab-
sorption is based on the theory by Miligram(1970), Falnes(1978),
Bessho(1980) and Salter(1981). The AMOEBA developed by
Naito et al.(1999) has these element absorbing wave-maker. It is
confirmed by experiments that the reflected waves on the wave-
maker does not stand in the AMOEBA. According to the linear
theory, an arbitrary wave field is described by the superposition
of waves generated by element absorbing wave-makers.
A polar coordinate system is defined on a water surface and

the points P and Q are defined as Fig. 2. The point Q is located
inside the circle with the center at the origin and the radius r0,
the length of OP . An element absorbing wave-maker is put at
the point P . Arguments of P and Q are represented as φ and θ
respectively. Each position vector is defined as

�OP = r0, �OQ = r, �PQ = s. (1)

The following relationship is obtained.

s = r − r0. (2)

Let r, s denote the magnitudes of the vectors r, s respectively.
The distance between P and Q is indicated by s:

s =
√

s·s =
√

r2 + r0
2 − 2rr0 cos (θ − φ). (3)

Then wave elevation at the point Q is described as

ζ(r, t) = �
[
H

(1)
0 [ks] e−iωt

]
, (4)

where k is a wave number and ω an angular frequency. These
numbers satisfy the divergence relation ω2 = kg tanh kh. The
notations h and g are water depth and gravity acceleration respec-
tively. According to the addition theorem of the Hankel function,
in r < r0 we obtain

H
(1)
0 [ks] =

∞∑
m=−∞

Jm [kr]H(1)
m [kr0] e

im(θ−φ), (5)
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Fig. 2 Coordinate system.

where Jm is the m-th order Bessel function of the first kind.
Multiplying einφ in the both sides of this equation and integrating
for φ from 0 to 2π, we can take only the n-th order term in the
right-hand side. Consequently the Bessel function of the first
kind is expressed by

Jn [kr] einθ =
1

2πH
(1)
n [kr0]

∫ 2π

0

H
(1)
0 [ks] einφdφ. (6)

This equation implies that the Bessel function expresses the wave
field generated by the element absorbing wave-makers put on
the circumference of the radius r0 without gaps between wave-
makers. The function einφ represents the phase difference be-
tween wave-makers. When n = 0, this phase difference disap-
pears and perfect ring waves appear. The wave field generated
by real wave-makers can be approximated by the discrete equa-
tion of Eq. 6:

Jn [kr] einθ ∼ Δφ

2πH
(1)
n [kr0]

N∑
j=1

H
(1)
0 [ksj ] e

inφj , (7)

where N denotes the number of wave-makers.

WAVE GENERATING FORCE OF WAVE-MAKER

An arbitrary wave field, except for breaking waves, is geo-
metrically described by the trigonometric series expansion for an
angular coordinate denoted by θ and the Fourier-Bessel series ex-
pansion for a radial coordinate denoted by r. Let ζ(r, θ) denote
the arbitrary wave elevation at the time t = 0. This elevation is
described as

ζa(r, θ) =

∞∑
n=0

∞∑
m=1

(Anm cosnθ +Bnm sinnθ) Jn [knmr] , (8)

where knm indicates the wave number for the radial coordinate.
Complex number usually makes wave problems simpler and is
given as

ζa(r, θ) =

∞∑
n=−∞

∞∑
m=1

CnmeinθJn [knmr] , (9)
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where,

Cnm =

⎧⎪⎪⎨
⎪⎪⎩
1

2
(Anm − iBnm) for n > 0

A0m for n = 0

(−1)n
2

(Anm + iBnm) for n < 0

(10)

Anm = A−nm, Bnm = B−nm,

knm = k−nm > 0.

The wave elevation at the time t is expressed by the real part of
the complex wave field given by the product of Eq. 9 and the
time oscillating component as

ζ(r, θ, t) = �
[ ∞∑

n=−∞

∞∑
m=1

CnmeinθJn [knmr] e−iωnmt

]
, (11)

where ωnm = ω−nm > 0. Substituting Eq. 7 into Eq. 11 gives

ζ(r , θ, t) =

�
[

N∑
j=1

∞∑
n=−∞

∞∑
m=1

CnmΔφeinφj

2πH
(1)
n [knmr0]

H
(1)
0 [knmsj ]e

−iωnmt

]
. (12)

Eq. 4 describes a wave field generated by the element absorb-
ing wave-maker located at the point P . The component e−iωt

in Eq. 4 expresses the oscillation of this wave-maker. Therefore
applying the transfer function for e−iωt, we obtain the wave gen-
erating force of this wave-maker. Naturally the component in Eq.
12:

∞∑
n=−∞

∞∑
m=1

CnmΔφeinφj

2πH
(1)
n [knmr0]

e−iωnmt

represents the oscillation of the element absorbing wave-maker
located at the point Pj . Applying the transfer function for this
component provides the wave generating force of this wave-maker.
The transfer function represented by complex number is defined
as F (ωnm). Then the wave generating force zj(t) of this wave-
maker is given by

zj(t) = �
[ ∞∑

n=−∞

∞∑
m=1

F (ωnm)
CnmΔφeinφj

2πH
(1)
n [knmr0]

e−iωnmt

]
. (13)

DINI EXPANSION OF WAVE FIELD

The wave number knm is determined from the boundary con-
dition at the basin wall where element absorbing wave-makers
are installed. The boundary condition is concerned with the or-
thogonality of the Bessel function. Getting back to the Bessel’s
differential equation, we obtain the integral equation of the Bessel
function as follows:(

ki
2 − kj

2
) ∫ r0

0

rJn [kir] Jn [kjr] dr =

r0

(
Jn [kir0]

dJn [kjr]

dr

∣∣∣∣
r=r0

− Jn [kjr0]
dJn [kir]

dr

∣∣∣∣
r=r0

)
. (14)

When the right-hand side of this equation equals to zero for
ki �= kj , the orthogonality of the Bessel function is satisfied.
The simplest condition due to the orthogonality is a couple of
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Fig. 3 Profile of the Bessel function satisfying the or-
thogonarity with respect to r0 based on the
Dini expansion.

Jn [kir0] = 0 and Jn [kjr0] = 0. However, this condition makes
the plentifulness of wave field reduced because the wave elevation
at the boundary must be restricted to zero. Jn [kjr0] = 0 implies
ζa(r0, θ) = 0.
Another condition deriving the orthogonality is

kjJ
′
n [kjr0] + pnJn [kjr0] = 0. (15)

The prime symbol denotes the derivative. The parameter pn is
defined as

pn = −ki
J ′

n [kir0]

Jn [kir0]
. (16)

This parameter pn is usually fixed to an arbitrary constant value.
This condition is available for more various wave fields because
the wave elevation at the basin wall is not restricted to zero. The
profile of the Bessel function for some wave numbers satisfying
this orthogonality is shown in Fig. 3. The Fourier-Bessel series
expansion in the condition of Eq. 15 is known as the Dini ex-
pansion. Using the series of wave number kj obtained from this
equation, we can express the orthogonality by∫ r0

0

rJn[kjr]Jn[k�r]dr

=

⎧⎨
⎩
0 for j �= �,

(pnr0)
2 + (kjr0)

2 − n2

2kj
2

Jn[kjr0]
2 for j = �.

(17)

According to this orthogonality, multiplying rJn[kn�r] in both
sides of Eq. 9 and integrating for φ from 0 to 2π and for r from
0 to r0, we obtain the coefficient Cnm by

Cnm =
unm

2

π (pn
2r0

2 + unm
2 − n2) Jn [unm]

2
×

∫ 1

0

∫ 2π

0

ζa(r0ξ, θ)ξJn [unmξ] e−inθdθdξ, (18)

where unm = knmr0. The integral range for the radial coordinate
is normalized. Although ζa(r, θ) represented by Eq. 9 is given as
a real number, Cnm can be determined from ζa(r, θ) given as a
complex number.
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Fig. 4 Mathematical boundary.
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Fig. 5 Profile of the Bessel function satisfying the or-
thogonality with respect to R0. The mathe-
matical boundary is indicated by R0 and the
basin boundary by r0.

FOURIER-BESSEL EXPANSION OF WAVE FIELD

The boundary satisfying the orthogonality is mathematically
permitted to exist outside the circular basin. We define the ra-
dius R0 which is larger than the basin radius r0 as shown in
Fig. 4. The simplest boundary condition for the orthogonality is
expressed by

Jn[kjR0] = 0. (19)

Using the series of wave number kj obtained from this equation,
we can express the orthogonality by

∫ R0

0

rJn[kjr]Jn[k�r]dr =

⎧⎨
⎩
0 for j �= �,

R0
2

2
Jn+1[kjR0]

2 for j = �.
(20)

Then the restriction of the plentifulness of wave field is removed
because Jn[kjr0] = 0 restricting wave elevation to zero at the
basin wall is not required like the Dini expansion. The profile of
the Bessel function satisfying this orthogonality is shown in Fig.
5. According to Eq. 20, multiplying rJn[kn�r] in both sides of
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Fig. 6 Wave generating force of element absorbing
wave-maker put on the circumference of the
basin.
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Fig. 7 Wave elevation on the x-coordinate at t = 0.

Eq. 9 and integrating for φ from 0 to 2π and for r from 0 to R0,
we obtain the coefficient Cnm by

Cnm=
1

πJn+1 [vnm]
2

∫ 1

0

∫ 2π

0

ζa(R0ξ, θ)ξJn [vnmξ] e−inθdθdξ, (21)

where vnm = knmR0. Eq. 19 implies that the enlargement of the
radius R0 makes the fundamental wave number k0 small. Hence
the large R0 gives the higher resolution of wave expansion.

VERIFICATION BY LONG-CRESTED REGULAR WAVE

The complex wave amplitude of the long-crested regular wave
with the wave number k traveling to the positive direction of
x-coordinate is expressed by

ζa(r, θ) = exp (ikx) = exp (ikr cos θ) . (22)

When this equation is substituted into Eq. 21, R0 is eliminated
and Cnm is obtained by

Cnm = in. (23)

In the derivation of this equation the integral description of the
Bessel function(Abramowitz et al. 1972) are applied. Substi-
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Fig. 8 Snapshot of extreme wave at t = 0.
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Fig. 9 Element component of extreme wave on the
x-coordinate at t = 0.

tuting Eq. 23 into Eq. 11 consequently gives the well-known
equation describing the long-crested regular wave:

ζ(r, θ, t) = �
[ ∞∑

n=−∞
ineinθJn [kr] e−iωt

]
. (24)

Substituting Eq. 23 into Eq. 13 provides the wave egeneration
force of each wave-maker:

zj(t) = �
[ ∞∑

n=−∞
F (ω)

inΔφeinφj

2πH
(1)
n [kr0]

e−iωt

]
. (25)

Fig. 6 shows amplitude values of zj(t) for N = 50, Δφ = 2π/N ,
r0 = 1.0 and k = 2π/0.3. The weather side is at φj = π and the
lee side is at φj = 0. In the weather side wave-makers obviously
generate waves. Fig. 7 shows wave elevations presented by the
Bessel functions and generated by the element absorbing wave-
makers in the section on the x-coordinate at t = 0. The wave
elevation by the Bessel functions is expressed by Eq. 24 and the
wave elevation by the element absorbing wave-makers is expressed
by Eq. 12. Both wave elevations completely agree. Eq. 12 is
consequently verified.

DESIGNING OF EXTREME WAVE

Authors define the extreme wave as the wave having big height
and big steepness. In this paper the extreme wave is provided by

ζa(r, θ) =

∫ π

−π

[
a0 exp

{
−a2r cos(θ − ϕ)− e−a3r cos(θ−ϕ)

}
−0.2a0 cos

{
π

r0
r cos(θ − ϕ)

}]
dϕ, (26)
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Fig. 10 Area of wave height measurement. Wave
height is measured at 546 points with 2cm
mesh interval in this area.

which describes the wave elevation at the time t = 0. For practi-
cal calculations, we deal the discrete formula described as

ζa(r, θ) =

M∑
μ=−M

[
a1 exp

{
−a2r cos(θ − ϕμ)− e−a3r cos(θ−ϕμ)

}
−0.2a1 cos

{
π

r0
r cos(θ − ϕ)

}]
,(27)

where ϕμ = μϕ0 and ϕ0 = π/M . This extreme wave is shown
in Fig. 8 for a1 = 0.005, a2 = 10, a3 = 50 and M = 12. The
element wave progressing from ϕj = 0 is described by

ζ0(x) = a1 exp
(
−a2x − e−a3x

)
− 0.2a1 cos

(
π

r0
x
)

, (28)

where x = r cos θ. This describes a long-crested wave. Its profile
is shown by the broken line in Fig. 9. The extreme wave ζa(r, θ)
is obtained by the superposition of element waves progressing
from the range of −π to π. The element wave ζ0(x) is assumed
to progress to the negative direction of the x-coordinate. To take
account into the dispersion relation of wave, we apply the Fourier
series expansion for ζ0(x).

ζ̂0(x) =

∞∑
ν=−∞

Dν exp (−iκνx) , (29)

where,

Dν =
1

2L

∫ L

−L

ζ0(x) exp (iκνx) dx,

κν = ν
2π

L
.

The wave profile described by Eq. 29 is shown by the solid line
in Fig. 9. The wave numbers are restricted within κν = 10 to 33
due to the capability of the element absorbing wave-maker of the
AMOEBA. Although this wave profile does not agree with the
wave profile by Eq. 28, the characteristics of extreme wave are
inherent. Therefore we use the wave described by Eq. 29 as the
designed extreme wave with the wave dispersion relation.
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Fig. 11 Wave contours before and after the designed extreme wave appears at t=5 s. Black dots put on the basin boundary
express element absorbing wave-makers.

The complex wave elevation of the extreme wave is described
by the Fourier series expansion:

ζ̂a(r, θ) =

M∑
μ=−M

∞∑
ν=−∞

Dν exp {−iκνr cos(θ − ϕμ)} . (30)

Substituting Eq. 30 into Eq. 18 or Eq. 21 gives Cnm. The wave
generation force of element wave-makers is obtained by Eq. 13.

GENERATION OF EXTREME WAVE

Although the configuration of the AMOEBA can be changed
for the aim of experiments, it was used as the circular basin with
a radius of 0.8m and a depth of 0.25m. The Dini expansion was
applied for the determination of wave generating forces of element
absorbing wave-makers. Cnm was obtained by Eq. 18, when
pn = 1 was adopted. The transfer function F (ω) of the element
absorbing wave-maker has been obtained by Naito et al.(1999,
2006). The wave elevation of the extreme wave was measured
with a capacitance-type wave height gauge at 2cm mesh interval
in a rectangle area of x = −0.3m to 0.2m and y = −0.2m to 0.2m
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Fig. 12 Wave elevation on the x-coordinate at t = 4.8
to 5.2s.

as shown in Fig. 10. The number of wave-height gauge points
are 546.
Fig. 11 shows the wave contours of the design wave, the sim-

ulated wave and the experimental wave before and after the ap-
pearance of the extreme wave. The designed wave by the Bessel
functions described in the left-hand section of Fig. 11 is obtained
from Eq. 17 and the simulated wave by element absorbing wave-
makers described in the center section of Fig. 11 is obtained
from Eq. 18. Waves progress to the negative direction of the
x-coordinate and gradually focus in the center of the basin. The
extreme wave appear at the time t = 5s. Although the focused
wave field expressed as an axial symmetrical contour appears at
t = 5.1s, it is not the designed extreme wave. The simulated
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Fig. 13 Time series of wave elevation at five points on
the x-coordinate.

waves agree with the designed waves. These results convince of
the correctness of the relation between Eq. 17 and Eq. 18. The
simulated waves also express the experimental waves well.
To compare the profiles between simulated and experimental

waves, we show the wave elevation appearing on the x-coordinate
at t = 4.8s to 5.2s in Fig. 12. The experimental wave has almost
same profile as the simulated wave at t = 4.9s and 5.0s. The
remarkable difference appears at t = 5.1s and 5.2s. Then the
experimental wave has a sharper crest and flatter trough than the
simulated wave. The crest of the experimental wave is located
forward of the crest of the simulated wave. This is caused by
water depth and the nonlinearity due to wave steepness.
Fig. 13 shows the time series of wave elevation at five points on
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the x-coordinate. In each point both wave elevations are almost
same except crests and troughs as well as Fig. 12.
From Fig. 12, the gradient of wave surface at x = 0 and

t = 5.0s is obtained as

dζ(x, t)

dx

∣∣∣∣
x=0,t=5

=

{
0.473 for experimental wave,

0.327 for simulated wave.

The wave steepness of gravity wave is limited to 1/7 and then
the maximum of the gradient of wave surface is π/7 = 0.449.
The limit of the gradient of wave surface appears in the extreme
wave obtained by experiments. Although we cannot discuss the
accuracy of wave height and steepness because the simulated wave
is approximately calculated by superposing ring waves based on
the linear theory, the generation of the extreme wave designed
arbitrarily is possible by using the proposed method.

CONCLUSIONS

A ring wave generated by an element absorbing wave-maker
put on the circumference of the circular basin (AMOEBA) can
be described by the Hankel function of the first kind in the lin-
ear theory. According to the addition theorem of the Hankel
function, the superposition of this wave mathematically provides
the n-th order Bessel function of the first kind with the origin
in the center of the basin. Because an arbitrary wave field is
decomposed into the Bessel functions and each Bessel function
is decomposed into the Hankel function, an arbitrary wave field
generated in a circular wave basin, of which basin wall is filled
with element absorbing wave-makers, can be represented by su-
perposing of ring waves expressed by the Hankel function. The
wave generating force of an element absorbing wave-maker is ob-
tained by applying the transfer function for the amplitude of the
Hankel function.
The extreme wave is a focused wave with big height and steep-

ness appearing at a specific point. This wave is also an arbitrary
wave. Although it radically has nonlinear characteristics, it can
be approximately decomposed into ring waves described by the
Hankel function by means of the Fourier-Bessel series expansion
and the Dini expansion. The extreme waves by simulation agrees
well with the extreme wave by experiment in the AMOEBA. As
the result, the proposed method of generating the extreme waves
is clarified to be useful.
The detail of the wave profile by experiment is exactly dif-

ferent from that by simulation. It is casued by the nonlinearity
of wave and the fact that a ring wave generated by a real ele-
ment absorbing wave-maker is approximated by a wave source
point. The weakly nonlinearity is expressed by the second or-
der solution. However, it is difficult to generate and control the
second order wave by the element absorbing wave-maker of the
AMOEBA, taking account into the permitted frequency range of
the current wave-maker. The future works would be focused on
generating and evaluating anothor extreme wave.
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